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Abstract
his report reviews the history, theory and mathematics of wavelet
analysis. Examination of the Fourier Transform and Short-time Fourier
Transform methods provides information about the evolution of the
wavelet analysis technique. This overview is intended to provide readers
with a basic understanding of wavelet analysis, define common wavelet
terminology and describe wavelet analysis algorithms. The most common
algorithms for performing efficient, discrete wavelet transforms for signal
analysis and inverse discrete wavelet transforms for signal reconstruction
are presented. This report is intended to be approachable by non-
mathematicians, although a basic understanding of engineering
mathematics is necessary.
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An Introduction to Wavelet Theory and Analysis

1 Introduction

The theory behind wavelets has been developed during the last twenty to thirty

years independently by mathematicians, scientists and engineers working in the areas of

harmonic analysis theory (Calderon, 1964), filter bank theory (Esteban & Galand, 1977;

Smith & Barnwell, 1986; Vetterli, 1984), and quantum mechanics (Aslaksen & Klauder,

1968). Morlet (1983) proposed the use of wavelets for analysis of seismic data and first

coined the term “wavelets.” From 1987 to 1992, synthesis of these cross-disciplinary

approaches evolved into wavelet analysis. Wavelet analysis has been used in a variety of

applications, including image compression (DeVore, Jawerth & Lucier, 1992), signal de-

noising (Donoho & Johnstone, 1994), noise reduction (Esteban & Galand, 1977) speech

and music processing (Kronland-Martinet, 1988), sound pattern analysis (Kronland-

Martinet, Morlet & Grossmann, 1987) and sound synthesis (Miner, 1998).

Wavelets provide a tool for time-scale analysis of stationary (linear-time invariant)

or nonstationary signals. Wavelets maybe a more appropriate technique for analysis of

real-world signals because the method captures the time-varying nature of these signals

very effectively. For example, real-world sound signals describe the spatial and temporal

course of an ecological event. As such, the sinusoidal components of a sound are not

eternal in time, but rather they have a beginning, an end and, most likely, variations in

time for the sound duration. Wavelets are finite in duration and therefore provide

analysis of local signal features. Wavelet transforms maintain all the signal frequency

and timing information. For these reasons, wavelet-based methods for processing non-

stationary, real-world signals may provide better results than more traditional methods.

This report presents information on wavelet theory and the wavelet transform

technique. The intention is to provide the basic concepts necessary for applying wavelets

to problems. The content for this report was distilled from several books on wavelets

(Daubechies, 1992; Ogden, 1997; Cohen& Ryan, 1995; Misiti, et al., 1996; Kaiser 1994;

and Strang & Nguyen, 1996). These books provide a detailed mathematical treatment of

the wavelet theory that is summarized here.



To understand wavelet analysis, it is helpful to relate the technique to the more

traditional methods of Fourier Analysis and Short Time Fourier Analysis. Thus, section

2 provides a brief review of the mathematical foundations of the Fourier Transform (FT)

method used in Fourier Analysis. The FT method is most useful when considering

stationary signals. Most real-world signals are not stationary in time. AFT variation that

captures some time-varying information by analyzing signal “windows” is the Short-

Time Fourier Transform (STFT). Section 3 describes the STFT technique. The report

culminates in Section 4 with a description of wavelet analysis, including the historical

development and the wavelet transform mathematics. Section 5 contains the report

summary and Section 6 contains references.

2 Fourier Theory
Jean Fourier developed the Fourier theorem in 1822 (Resnick & Halliday, 1960).

The Fourier theorem is the basis of many signal analysis techniques including the Fourier

Transform, the Short-Time Fourier Transforms (STFTS) and, more recently, wavelet

analysis. The Fourier theorem states that all signals are made up of a combination of sine

waves of varying frequency, amplitude and phase that may or may not change with time.

The Fourier transform is a mathematical technique based on this theorem that breaks a

signal up into its constituent sinusoidal components. This section briefly reviews the

mathematics of the Fourier Transform method.

2.1 The Fourier Transform

The Fourier Transform (FT) is a method for decomposing a time domain signal

into its constituent frequency components. The standard continuous FT pair of equations

is as follows (Oppenheim & Schafer, 1989).

-w

I’(o) = & Jf(Oe ‘J&dt

-co

(2.1)

.

f(t) = ‘~F(co)e~otdto

-03

(2.2)



where t is time, o is radian frequency, f(z) is the input signal, and I’(o) is the Fourier

spectrum evaluated on the sine and cosine basis functions as indicated by duo.The relation

between radian frequency, tq and frequency in Hertz,j is:

o=272f (2.3)

All time domain signals no matter how complex, can be broken into constituent

sinusoidal components using Equation 2.1. The result is a set of values, F(oj (known as

the Fourier spectrum of the signal) indicating the frequency components and respective

amplitudes. The FT results do not provide explicit information about time duration, onset

or offset of frequency components, because the itiormation is spread across the Fourier

spectrum. This is the case because the sine and cosine basis functions of the FT have

ir@ite support (non-zero across an infinite interval). In this sense, the FT provides a

global picture of the signal frequency content and timing. Thus, the transform is most

applicable for stationary signals that do not vary overtime. Signals decomposed using

Equation 2.1 can be reconstructed through the Inverse Fourier Transform (IFT) shown in

Equation 2.2. The result of the IFT is a time domain signal,~(~, identical in content to

the original signal.

2.2 The Discrete Fourier Transform

Discrete-time signals are those in which the independent and/or dependent

variable has discrete values. Discrete-time signals are represented as sequences of

numbers. Typically, real-world signals, such as sound, are digitized prior to analysis;

thus, the time and amplitude are discrete. The equations for computing the Discrete

Fourier Transform (DFT) coeftlcients, X@), and the Inverse Discrete Fourier Transform

(1.DFT)for an input signal x[n] are as follows (Oppenheim & Schafer, 1989):

(2.4)

(2.5)

n.–m
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where n is the discrete time index in samples and o is the discrete radian frequency

(ranging from -n to +-n). The sampling frequency,j, is related to ~ by o = ~.
s

In practice, real-world signals are nonstationary, meaning that the signal

properties (amplitudes, frequencies and phases) change with time. The discrete FT does

not represent the time-varying signal information in a manner that provides easy access to

individual signal components. To overcome this shortcoming, the Short-Time FT

(STFT) has been developed and is usefid for real-world signal analysis. The next section

describes the STFT.

3 The Short-Time Fourier Transform

A variation of the FT is the windowed FT, time-dependent FT or the Short-Time

Fourier Transform (STFT) developed by Denis Gabor (Cohen & Ryan, 1995). The STFT

views (and analyzes) the input signal in sections through a moving window function.

This technique provides analysis of signals with time-varying information; however, the

analysis resolution is limited by the choice of window size. This section describes the

STFT technique and provides an example use of the STFT in music synthesis.

3.1 Mathematics of the Short-time Fourier Transform

The STFT method calculates afiame of Fourier coefficients by applying the FT to

a localized time-slice of the signal as seen through a window fiction. The window is

moved or “hopped” over by a specified amount of time, and then another windowed FT is

perilormed. The discrete STFT is represented mathematically as follows (Oppenheim &

Schafer, 1989; Serra & Smith, 1990):

X(Z, co)= ~ x[n + lHl~n]e-~on 1 = o,l~ (3.1)
n.–a

where x[n] is a discrete input signal, 1is a particular frame, His the hop size, w[n] is the

window function, o is the radian frequency and X(7, O) are the resulting set of FT

coefllcients for the frame.

In Equation 3.1, the discrete analysis window fimction, w[n], determines the

portion of the input signal to be processed at a particular fiarne 1. H is a constant that
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represents the hop-size, or amount to move the signal. The STFT computes a FT

spectrum on a window-sized portion of the input signal, x[n], at every fkirne 1. The

signal is advanced by the hop-size, H, thereby “sliding” it past the window fi.mction.

Thus, at each frame, 1,a different portion of the signal is viewed through the window and

is analyzed with a FT.

The choice of analysis window determines the smoothness of the spectrum and

the detectability of different sinusoidal components. The most commonly used windows

are the Rectangular, Hamming, Harming, Kaiser, Blackman and Blackman-Harris. Harris

(1978) provides a description of these window fimctions and the trade-offs for each. The

characteristics of the analysis window remain fixed for the duration of the STFT analysis.

3.2 Inverse Short-time Fourier Transform Methods

The inverse STFT is the process of reconstructing the original signal from an STFT

decomposition. Allen &Rabiner(1977) provide an in-depth description of two inverse

STFT methods, the filter-bank summation (FBS) method and the overlap-add (OLA)

method. The methods are complementary and have a formal duality.

The FBS approach modulates the X(., @ STFT coefficients back to frequency co,

and then sums the results over all frequencies. This is reasonable because X(n, @ is a

low-pass, band-centered representation of the input signal for any frequency, O.

The OLA approach is based on the traditional FT interpretation of the STFT.

This method is often superior to FBS when modifications are made to the STFT results

prior to synthesis. The OLA method is based on the fact that the X(7, O) STFT

coefficients are essentially FTs of the sequence

il [n]= x[n + lHl~n]

where ~1[n] represents the FT of the windowed signal at fiarne 1. Thus, the original

(3.2)

signal samples can be recovered by taking the inverse FT of X(i’,@ and dividing out the

window function (provided the window has at least one nonzero sample). The

normalized inverse STFT follows directly from the FT synthesis equation as follows:

7



xl [n]=
2~n1+r~(@FJ@”d@’

-m<n<m

–n

(3.3)

Equation 3.3 shows that an inverse FT is performed on each analysis frame result. The

complete signal is reconstructed bys umming the 1frames of inverse FT results:

x[n] = ~ xl [n]

1

.
(3.4)

3.3 Discussion

The STFT examines an input signal in time segments as determined by the

analysis window length. For nonstationary signals, this is an improvement over the

traditional FT, because some of the time-based information is maintained explicitly

according to frames. However, the standard STFT technique assumes that the input

signal is stationary within the duration of the analysis window. For real-world signals,

this is often not the case. Serra & Smith (1990) propose a method for tracking the time-

varying information between successive windowed results obtained from an STFT

analysis. The method assumes that salient features are identified by peak frequency

responses when a window of the signal is analyzed. They employ a peak detection

algorithm for isolating the salient frequencies and a peak continuation algorithm for

tracking the salient signal features between window frames. The signal information that

is not tracked is modeled as stochastic noise. To model the noise, a residual, or error

between the salient signal features and the original input signal, is calculated. Each

analysis fi-ameyields a different residual. An envelope approximation algorithm

estimates the overall shape of the residual noise for each fiarne. During reconstruction,

the residual envelopes are used as filters on a pseudo-random noise source. These noise

sources are combined with the inverse STFT of the salient signal features to produce

eftlcient and realistic signal synthesis.

Serra and Smith’s approach works well for modeling musical instruments, because

the basic assumption, that frequency peaks indicate salient features, is often true for

musical tones. However, this is not necessarily the case for all real-world signals. For

example, the stochastic noise components strongly characterize real-world environmental
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smmd signals. Thus, the salient signal features of environmental sounds are not

illuminated by a STFT analysis and cannot be tracked from fh.rne to frame using the peak

detection scheme. Furthermore, Serra and Smith’s envelope approximation method for

modeling the stochastic signal components is not appropriate for modeling the stochastic

characteristics of real-world environmental sounds. The method is adequate for capturing

supplementary itiorrnation for a primarily pitched sound and adds a sense of realism to

Smra and Smith’s musical instrument models; however, the method does not have the

time-resolution necessary for capturing the perceptual essence of real-world stochastic-

based signals. The next section describes the mathematical theory behind wavelets and

discusses how wavelets are often more appropriate for modeling the time-varying nature

of real-world signals.

4 Wavelet Theory
This section presents an overview of wavelet theory and wavelet analysis.

Standard notations are defined in the first section, followed by the historical development

of’wavelets. Next the mathematics of the discrete wavelet transform are presented

including an illustrative example of how to perform a wavelet analysis. Next, the

relationship between wavelets and scaling functions is defined. Understanding this

relationship is important for understanding the basis of the inverse wavelet transform that

provides perfect signal reconstruction. The final sections describe efficient algorithms

for performing discrete wavelet transforms and inverse discrete wavelet transforms.

4.1 Definitions and Notation

Th following definitions and notations are used throughout this section:

‘R the set of real numbers (-m, m).

Z the set of integers {..., -2, -1, 0, 1, 2, ...}.

12 the Hilbert function space, or the set of fimctions that are square - integrable, L* (1)

L2 (I)

12(Z)

square - integrable fictions {~: \~2 (X)G?Xe ~}; set of signals with finite energy.
I

is square- sumrnable: {}
mk is an /2 sequence if ~ zn~ < m

k EZ

9



(~,~) the L2 inner product of two fhnctions (~,g) = ~f(x)g(x)dx.

llfll the L2 norm: llj112= (~,~).

{}
Compact support: a fi.mction’s impulse response, hn ,n GZ is finite.

Orthogonal fimctions: Two functions~l ,~2 = L2 are orthogonal if (~1,~2 ) = O.

Orthonormal functions: A fimction sequence {~i} is orthonormal ifl

1) the~i’s are pairwise orthogonal

2) the L2 norm, fi , equals 1 for all i.

[

1, O<x < 1/2

Haar Wavelet Function: y(x) = -1,1/ 2<x<l

O, otherwise

FIR (Finite Impulse Response) filters: the impulse response is finite in length (i.e. is zero

outside a finite interval).

4.2 Historical Development

Wavelet analysis is the next logical step for analysis of time-varying, real-world

signals. Wavelet analysis is a windowing technique similar to the STFT but with

variable-sized windows. As with the FT and STFT methods, wavelet analysis consists of

signal decomposition (wavelet transform) and reconstruction (inverse wavelet transform)

phases. This section describes the historical evolution of wavelet analysis and describes

the commonly used terminology.

Alfred Haar(191 O)is credited with the first use of a wavelet, although the term

wavelet was not coined until Morlet used it in his signal processing work of 1983. The

wave shape used by Haar is now known as the Haar wavelet. It is the simplest wavelet

possible and resembles a step function. The Haar wavelet is discontinuous and therefore

consequently yields poor frequency localization. Haar wavelets are helpful for

developing a basic understanding of wavelet analysis but are not often used in practice.

The Haar wavelet is an example of an orthonormal wavelet. Orthonormal wavelets

have specific properties that provide a means for efficient decomposition of a signal.

Orthonorrnal wavelet functions define a specific set of filters for efficient signal

decomposition and reconstruction. With the high speed of today’s computer systems,
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real-time wavelet synthesis is feasible using these wavelet functions. Stromberg (1982)

is often credited with the development of orthonormal wavelets; however, the

orthononnal wavelet system introduced by Yves Meyer in 1985 received more

recognition and became popularly Imowmas the Meyer basis (Meyer, 1993).

Esteban&Galand(1977) in their subband coding research, proposed a filtering

scheme that did not introduce signal aliasing. With this scheme, signals are filtered into

low and high frequency components with a pair of filters. The filters are mirror images

with respect to the middle, or quadrature fkequency, x/2 (Strang & Nguyen, 1996).

Filters chosen according to this scheme are called quadrature mirrorjlters (QMFs) or

om-zjugate quadrature jilters (CQFS). Mathematical derivation of QMFs will be

described in Section 4.4. Orthonormal wavelet bases developed with QMFs provide exact

signal reconstruction.

Ingrid Daubechies (1988) constructed wavelet bases with compact support meaning

that the wavelets are non-zero on an interval of finite length (as opposed to the infinite

intend length of the FT’s sine and cosine bases functions). Compactly supported

wavelet families accomplish signal decomposition and reconstruction using only Finite”

Impulse Response (FIR) filters. This development made the discrete-time wavelet

transfoxm a reality.

Stephane Mallat (1989) proposed the Fast Wavelet Transform (FWT) algorithm for

the computation of wavelets in 1987. This technique was similar to noise reduction

techniques developed in the 1970s (Esteban & Galand, 1977). Both of these techniques

are unified by the concept of multiresolution analysis. In fact, the concepts of wavelet

analysis are tightly coupled with those of multiresolution analysis. Multiresolution

analysis (MRA) is based on the concept that objects can be examined using varying

levels of resolution. An analogy is the multiple-level-of-detail concept in computer

graphics. When a viewer is far away from a graphical object, a low level of detail can be

used to render the object. As the viewer nears the object, a higher level of detail is

required so that the object appears realistic. This zoom-in, zoom-out property of MRA

serves as one of the basic properties for wavelet analysis. Orthonormal wavelet fimctions

are derived from scalingfinctions (described in Section 4.4) that satisfy the properties of

MRA. Briefly, a multiresolution analysis 1) is an increasing sequence of closed, nested

11



subspaces {Vj}j~z that tends to L2(iR)asj increases, 2) satisfies a twin-scale relation

(defined in Section 4.4) linking successive decomposition levels and 3) contains an

orthonormal basis derived from a function, ~ and its integer translates {~x-b)~ .Z }

(Cohen & Ryan, 1995).

The next sections present a summary of the wavelet transform, wavelet fimction,

scaling fimction and coel%cient calculations. The discussion in these sections pertains to

orthonormal wavelets in the MRA framework and compactly supported scaling fi-mctions.

Discussion of wavelets not satisfying these criteria is beyond the scope of this report.

4.3 The Discrete Wavelet Transform

Similar to the STFT approach, wavelets analyze the input signal in sections by

translation of an analysisfinction. With STFT, the analysis fimction is a window. The

window is translated in time but is not otherwise modified. The wavelet approach

replaces the STFT window with a wavelet fimction, V. The wavelet fi.mction is scaled

(or expanded or dilated) in addition to being translated in time. The ~is often called a

mother wavelet because it “gives birth” to a fhrnily of wavelets through the dilations and

translations. A generalized wavelet family, Y%b,described in the normalized form is:

(4.1)

where a represents the scale and b represents the translation parameters.

The scale parameter, a, indicates the Jeve/ of analysis. Small values of a provide a

local, fine grain or high fi-equency, analysis while large values correspond to large scale,

coarse grain or low-frequency, analysis. Changing the b parameter moves the time

localization center of each wavelet; each ~~b(x) is localized around x = b.

Typically, the scale factor between levels increases by two. Thus, scaling is also

known as dilation. Widely used a and b parameter settings that create an orthonormal

bases are a = 2 and b =2’ k fj,k c Z). The wavelet fiunily then becomes:

w~(x) = 2-J’2 f#(2-jx-q (4.2)
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The wavelet is not necessarily symmetric, but in order for perfect reconstruction

to be possible, it does satis~ ~v(x)dx = O. Other properties of the wavelets discussed in

this report are orthonormality and compact support. Wavelet families that satis~ these

conditions are the Daubechies wavelets (often denoted by dbN, where N is the wavelet

order), Symlet wavelets (.syrnN)and Coiflet wavelets (coz~. Other wavelet families

exist, including the symmetrical types of the Morlet wavelet, Meyer wavelet and Mexican

Hat wavelet. Construction of new wavelet families is an active research area. The most

commonly used wavelets are the Daubechies family, although other wavelet fhmilies may

prove more advantageous for decomposition of real-world signals. The choice of wavelet

type is highly application specific.

Analogous to the STFT, the wavelet transform calculates wavelet coefficients by

taking the inner product of an input signal, ~(x,, with a function, that is in this case the

wavelet family, ~,ic(x). The continuous time, discrete wavelet transform (DWT) is:

‘j,, ‘(f9Vj,~)=2-’’2~ f(x)~(JXJk)&)& (4.3)

where Dj,~are the wavelet coefficients. In the wavelet vernacular, the wavelet coefficients

are called details. The next section makes the significance of this clear by examining

how the wavelet functions are obtained. From an intuitive perspective, the wavelet

coefficients are measures of the goodness of fit between the signal and the wavelet.

Large coefficients indicate a good fit. Figure 4.1 graphically illustrates the wavelet

transform steps on an arbitrary signal using the Daubechies 4 (db4) wavelet type.

13
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.:
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:
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Wavelet I

:
::

‘Di,j =0.136;

Figure 4.1 Illustration of wavelet transform steps to calculate wavelet coeftlcients,
Dti (example uses Daubechies 4 (db4) wavelet type).

4.4 Wavelets and the Scaling Function

As described earlier, changing the mother wavelet’s dilation,j, and translation, k,

parameters, creates a family of wavelets, ~,k. Filtering the input signal by ~,k results in

a set of detail coel%cients that represent the high-frequency signal itiormation. This

section describes how to obtain the mother wavelet using a scalingfinction.

Wavelet fimctions are constructed from a father wavelet, or scaling function, @

The scaling function is not any arbitrary shape, but rather it is a finite duration fimction

with integral ~$(x)a!x = 1, satisfying the properties of a mukiresolution analysis (MRA),

as stated earlier. From the scaling fhnction, ~, it is possible to construct an orthonormal

wavelet, ~, such that a signal can be decomposed (analyzed) and reconstructed exactly

and efficiently. The development of this relationship is briefly summarized here.

There exists a twin-scale relation (also known as the dilation or refinement

equation) that relates MRA functions at successive levels:

.
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$Xx)= W ~J’zkwx- k) (4.4)
k=

where @(x)is the scaling fimction and hk is a square-summable sequence whose elements

are obtained ilom the inner product of two levels of scaling fimctions:

(‘k = 4j+l,0’~j,k )
(4.5)

The sequence {hk] represents the coefficients of the scaling function filter. If a scaling

function is selected from one of the known family of wavelets, the scaling filter

coefficients are known. The scaling filter is a low-pass, FIR filter. The filter has the

properties of ~hk
r

= 1 and normalization of ~ hk2 = ~.
&

Using the twin-scale relation and the MRA properties, a general equation for

calculating the scaling function at any levelj+l given levelj is given by the equation:

‘j+l,()(x)= x ‘k@j,k (x)
k EZ

(4.6)

where @j,/c(x)is the scaling function at levelj with translation index k, and $+l,o is the

next lower level scaling fimction (larger indices,j, correspond to expansion of @).

From the scaling function, the wavelet fimction, ~ is calculated as follows:

where ~(x) represents the mother wavelet (top most wavelet) and gk represents the

waveletjlter coefficients defined by:

f?k = (–l)kh&k

(4.7)

(4.8)

l%us, the wavelet function is obtained by convolving the scaling fimction with the

reversed and alternating signed form of the scaling filter. The wavelet calculated by

Equation 4.7 is orthogonal to the scaling fi.mction. The general equation for calculating

the wavelet function at any Ievelj is given by:

~~+l,()(x)= z gk~j,k(x)
k eZ

(4.9)
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Figure 4.2 shows an example of a wavelet and corresponding scaling function,

specifically the example shows the Daubechies 4 (db4) functions. As the figure shows,

the wavelet fhnction has high-frequency oscillations and the scaling fiction is lower in

frequency. Thus, the wavelet fimction creates a high-pass wavelet filter (@ that provides

the detail coefficients. The scaling fiction creates a low-pass filter (h~)that provides the

approximation coefficients. The terms are appropriate; consider a speech signal for

example. A speech segment can be understood when high-frequency details are

suppressed; however, if the low-frequency signal approximations are removed, a human

listener cannot interpret the speech signal.

db4 wavelet function
2

db4 scaling function
2

1 n 1.

0 0.
) 2 () 2- 4 6

-1 -1

-2 -2

Figure 4.2 Daubechies 4 (db4) wavelet and scaling functions.

Deriving the wavelet filter coefficients by Equation 4.8 forces the wavelet and

scaling filters to be quadrature mirror filters (QMF) of each other and makes perfect

signal reconstruction possible. The wavelet filter is the mirror reflection of the scaling

filter with alternating signs. For example, if the scaling filter coefficients are h~=

{%b,c,d), then the wavelet filter coefficients are g~= {d,-c,b,-a). Because the QMF

property is critical, often wavelet researchers start with the design of the QMF filters and

let the filter coefilcients determine the shape of the wavelet and scaling fhnctions. Misiti

et al. (1996) describes the algorithm for obtaining the @and v function shapes from the

respective filters as repeatedly convolving an upsampled wavelet with the scaling filter.

How are the approximation coefficients calculated? Recall from Equation 4.3 that

the detail coefficients are created by convolving the input signal with the wavelet

fbnction. The approximations coefficients are calculated in the same way, by taking the
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inner product of the input signal,f and the fiunily of dilated,j, and translated, k, scaling

fhnctions:

(4.10)
-w

Equations 4.3 and 4.10 define the procedure for complete signal decomposition

using wavelets. Although these equations can be implemented algorithmically and would

provide accurate results, they do not provide efficient signal decomposition. The next

section describes an efficient decomposition procedure that uses convolution rather than

integration for calculating the detail and approximation coefficients.

4.5 Efficient Wave/et Decomposition Algorithm

As described in the previous sections, a signal is decomposed using the wavelet

transform technique into two sets of coefficients called approximations (Aj,J and details

(1>,~). The approximation coefficients represent the low frequency and the detail

coefllcients represent the high-frequency signal components. Calculating the detail and

approximation coefficients through integration as shown in Equations 4.3 and 4.10 is

time consuming, especially as the decomposition algorithm is applied repeatedly to

intermediate sets of coefficients (known as multi-level decomposition). A more efllcient

algorithm resuhs from calcdating the Aj,~ and Dj,kcoefficients through convolution of the

input signal with the scaling filter {h/c}and wavelet filter {gk}respectively. This

recursive decomposition algorithm is sometimes referred to as the cascade algorithm

(Daubechies, 1992) or the pyramid algorithm (Mallat, 1989). It is key to the fast wavelet

transform algorithm.

Using the relations in Equations 4.10 and the Dilation Equation in 4.6, an efficient

decomposition algorithm for computing the Aj,kcoefficients is obtained (Ogden, 1977):

Aj~l,~ = ~h.-,,Aj,. (4.11)
n

wherej is again the level (or scale), k is the translation index, and hk is the scaling

function filter coefilcients as in Equation 4.5. This equation says that lower-level
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approximation coefficients (Aj+l,k)are computed recursively given the approximation

coefficients at a higher level (Aj).

Similarly, a twin-scale relationship for computing the D_,~coefilcients is obtained

using the relation in Equation 4.9 resulting in the decomposition formula:

Dj+l,k
‘~g.-2kAj,.

n
(4.12)

where g~ is the wavelet filter coel%cients as defined in Equation 4.8. This equation says

that lower-level detail coefllcients (Dj+l,~)are computed from higher-level approximation

coefficients, (A~). Recursive application of these decomposition formulas provides a

means for obtaining lower level detail and approximation coefficients once the highest

level approximation coefficients are calculated. The input signal provides the top level

(finest grain) approximation coefficients, (Ao). Figure 4.3 shows a pictorial of the

decomposition process.

f(x)=% -~ & -> AZ —p As

\D, \D2\D
3

f(x) = A1+D1= A2+D2+D1= A3+D3+D2+D1

Figure 4.3 Schematic of wavelet decomposition algorithm. Lower level
Approximation (Aj) and Detail (Dj) coefficients are obtained from the highest level

A. coefficients. A. is the input signal f(x).

Notice in Equations 4.11 and 4.12, changing the translation index, k, by 1 results

in the indices of the {h~}and {g~}sequences being offset by two. Thus, there are half as

many coefficients at levelj+l as there are at levelj. The result is a downsampling of the

coefficient vectors by a factor of two in the decomposition algorithm. The downsampling

and recursive nature of the algorithm are important components of the fast wavelet

transfoxm algorithm.
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4.6 inverse Discrete Wavelet Transform

The wavelet decomposition algorithm is reversible and provides exact signal

reconstruction. The inverse discrete wavelet transform (IDWT) provides signal

reconstruction or synthesis. Lower level approximation and detail coefficients combine

tc)create higher level coefficients. Figure 4.4 shows the reconstmction process.

f(x)=~ <— AI <— A2 <— A3

\.1KD2’&3

A3+D3+D2+D1= A2+D2+D1= A1+D1= f(x)

Figure 4.4 Schematic of wavelet reconstruction algorithm. Lower level
Approximation (Aj) and Detail (Dj) coefficients combine to reconstruct signal.

The discrete wavelet reconstruction formula using the wavelet filter {g~}and

scaling filter {h~}is as follows:

A
j,k =

~h
k–2mAj+l,m + ‘k–2mDj+l,m

(4.13)

m

Thus, the approximation coefficients (AJ at any level can be computed from one

set of low-level scaling fi.mction coefficients (A~+l,J and all the intermediate wavelet

coefilcients (D~+J,J. In order to provide perfect reconstruction, the h and g

reconstruction filters are mirror images of the decomposition filters. For example, if the

decomposition filter H = hk = {a,b,c,d), then the reconstruction filter H’ = hk’ = {d,c,b,a}.

Consequently, the pair of reconstruction filters are also QMFs. Notice that the subscript

on the h and g filters is k-2m. The effect of the 2m subscript is that the coefilcient vectors

A and D are upsarnpled (zeros inserted at every other location) prior to convolution with

the filters. This is analogous to the downsampling operation in the decomposition

process. The upsampled and filtered coefilcient vectors are then added together to create

the next higher level A~,~vector. This process is repeated recursively to recreate the

original input signal.
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4.7 Discrete Wave/et Transform Summary

Overall, the DWT decomposes a signal into high (A) and low (D) frequency

coefficients through filtering and downsampling operations. Recursively iterating the

decomposition steps breaks the signal into lower level (coarser grain) coefficient sets.

Manipulating wavelet coefficients prior to signal reconstruction changes the

original signal. The original signal can be modified, enhanced or de-noised through

various coefficient manipulation operations. In Miner (1998), subtle and compelling

sound variations were obtained by manipulating the coefficients obtained from wavelet

decompositions. Thresholding wavelet coefficients is an effective method of de-noising

or compressing a signal or an image (Misiti, et al., 1996).

Without coefilcient manipulations, the original signal can be reconstructed exactly

through the IDWT. A modified version of the original signal is obtained through the

IDWT if coefficient manipulations have been performed. The reconstruction steps

involve upsarnpling and filtering operations with filters that are mirror reflections of the

decomposition filters. The filter pairs (decomposition and reconstruction) are quadrature

mirror filters (QMF) enabling perfect reconstruction. Figure 4.5 shows a pictorial

summary of a single level wavelet decomposition and reconstruction operation. This

figure indicates the functions necessary for computer implementation of the wavelet

transform, including filtering, downsampling and upsampling operations.

I I

I SignatIn ~ I
t

Figure 4.5 Wavelet decomposition and reconstruction process. Wavelet filter, G,
produces high-frequency details (D). Scaling function falter, H, produces low-

frequency approximations (A).

20



~ewavelet filter cons~ction isdemonstiated tioughaexmple. Consider the

Daubechies 3(db3)scalingfilterwith six coefficients (row l, Table 4.1). Coefficientsof

the low-pass reconstruction filter, H’, are normalized versions of the scaling filter

cctefficients (H’ = db3/(norrn(db3)). Reversing the order of H and changing the even

cciefficient signs creates the high-pass reconstruction filter, G. Reversing the order of H

and G yields the low-pass (H) and high-pass (G) decomposition filters. Figure 4.6

ccmtains plots of the impulse responses for the db3 scaling fimction and filters.

Vector Coeftlcient Index

Name 1 2 3 4 5 6
db3 0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249
H 0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327
G -0.3327 0.8069 -0.4599 -0.1350 0.0854 0.0352
H, 0.3327 0.8069 0.4599 -0.1350 -0.0854 0.0352
G! 0.0352 0.0854 -0.1350 -0.4599 0.8069 -0.3327

Table 4.1 Wavelet falter construction example showing Daubechies wavelet 3 (db3)
scaling filter coefficients and corresponding low-pass (H) and high-pass (G)

decomposition and reconstruction (H’ and G’ respectively) filters.

1

CI.5

o

-cl.5

-1

1

().5

o

-0.5

-1

Original Scaling Filter fordb3
1 1 1

Decomposition low-pass filter (H) Decomposition high-pass filter (G)

E===!=l :-

Reconstruction low-pass filter (H’) Reconstruction high-pass filter (G’)

I I -1 I I

Figure 4.6 Plots of impulse responses for Daubechies wavelet db3 scaling function
filter and corresponding low-pass and high-pass filters from Table 4.1
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Wavelet analysis, including decomposition and reconstruction fhnctions, are

becoming readily available in a variety of software systems. Matlabm has extensive

support of these fhnctions in their wavelet toolbox (Misiti, et al., 1996). Wavelet support

is available for Intel’s MMX processors in the signal processing libraries of the VTune

plug-in for Visual C/C++ (VTune, 1997). In addition, a variety of freeware and

shareware implementations of the discrete wavelet transform algorithms are available on

the world wide web. Thus, soflware developers today need not write their own wavelet

analysis routines from scratch.

5 Summary

The wavelet transform is often times advantageous for signal analysis and synthesis

over the traditional Fourier and Short-time Fourier transform techniques. The major

benefit to using wavelets is that variable length, finite filters are used for signal analysis,

thus, local, time-varying information is captured explicitly. Discrete wavelet transform

algorithms are well defined and provide efficient signal decomposition and perfect signal

reconstruction. The wavelet decomposition coefficients, approximations and details,

obtained from a wavelet analysis provide a means for tracking the signal characteristics

over time and frequency. These coefficients can be manipulated to change the original

signal characteristics if desired. The wavelet reconstruction algorithm recursively

combines the coefficient groups to obtain the original signal, or a variation of the original

signal (if coefficients are modified after decomposition).

Overall, this report has presented a review of the basic theory behind wavelet

analysis. The evolution of wavelet analysis was presented from the perspective of the

Fourier Transform and Short-time Fourier Transform techniques. The discrete wavelet

transform decomposition and reconstruction algorithms were presented to provide

developers with a basic understanding of the approach. The reference section includes

sources that can provide the reader with more detailed information on wavelet analysis,

theory and algorithms.
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